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Aggregation models at high packing fraction
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Dense phases of micellar aggregates have strong molecular correlation at two different levels: that of the
molecules forming a micelle and that between micelles, leading to a possible phase transition from a micellar
fluid to a micellar crystal. The global phase diagram may also include lamellar and other dense phases, which
do not have a micellar structure. We present here a generic approach to deal with these systems through a
two-level density-functional description, to first describe an isolated micellar aggregate and then the dense
micellar system, obtaining the free energy in a self-consistent way from the molecular interactions. Nonmi-
cellar dense phases are included with the same density-functional approach applied at the first level. The results
are shown to be very accurate for a one-dimensional model with exact solution, and the method is then applied
to a three-dimensional amphiphile model that had been successfully used to describe the properties of diluted
amphiphile solutions.

PACS number~s!: 87.16.Dg, 87.16.Ac, 64.90.1b, 05.70.2a
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I. INTRODUCTION

Amphiphilic molecules in water solution organize them
selves in micellar structures: dropletlike clusters made
Nm;103 molecules, with their polar heads in the surface a
their hydrophobic tails in the interior. The ‘‘critical micella
concentration’’~CMC! is a quasiphase transition, when th
system goes from a diluted solution of single molecules t
diluted solution of micelles, as the loss of entropy and
decrease of the energy to form the micelles are balan
@1,2#. The description of the CMC and the properties of t
micellar dilution have been studied with many differe
models, phenomenological and microscopic@3#, to estimate
the ‘‘internal’’ Helmholtz free-energy excessFm , and grand-
potential excess,Vm(T,m)5Fm2mNm , of a single micelle
in a bath of amphiphile at a chemical potentialm and tem-
peratureT. The concentration of micelles is then predicted
be

rm5
1

vm
exp~2bVm!, ~1!

with the usualb5(kBT)21. This expression implies the
treatment of the diluted solution of micelles as an ideal
of particles, with Helmholtz free energy per volume,

b f id~rm!5rm@ log~rmvm!211bFm#, ~2!

whereFin plays the role of the ‘‘internal energy’’ per par
ticle and the prefactorvm in Eq. ~1! is the ‘‘unit cell’’ vol-
ume in the configurational space of position for the micell
The ‘‘chemical balance’’ between micelles and their comp
nent molecules,mm[] f id(rm)/]rm5Nmm, leads directly
from Eq. ~2! to Eq. ~1!.

There has been some confusion about the value ofvm and
its dependence on the micellar size, but the dependenc
rm on T andm is given mainly by the exponential factor i
Eq. ~1!, so that the CMC is associated to the vicinity of t
PRE 621063-651X/2000/62~5!/7147~8!/$15.00
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line Vm(T,m)50 in the thermodynamic space. In a previo
paper @4# we analyzed a simple model in one dimensi
~1D!, which presented some qualitative features in comm
with amphiphilic systems: the existence of molecular agg
gates with a well-defined preferential size and structure
the result of pair molecular interactions and internal degr
of freedom. The model has an exact solution for the equi
rium properties, and the results were compared with th
given by approximations that are feasible to use with m
realistic models. The main result was a prescription for
prefactorvm , consistent with the approximation used to ca
culateFm ,

vm5G expS 2b
Fm2Em

Nm
D , ~3!

whereEm is the cohesion energy of a micelle, i.e., its intern
energy excess, andG is the unit cell volume used to measu
the configurational phase space inFm . Although the prefac-
tor G in Eq. ~3! is a convenient way to givevm its units of
volume, it was shown@4# that vm , and rm in Eq. ~1!, are
independent of the value ofG; as it should be for any struc
tural property in classical statistical mechanics@5#. The ex-
cess free energyFm has always a dependence onG, with the
form kTNm log(G), which cancels out that prefactor. In th
following results forbFm , b f m , andbm we have takenG
5s for the 1D model andG5s3 for the 3D model.

In this paper we address the question of the ‘‘den
phases,’’ in which the density of aggregatesrm , becomes
too large to neglect their interactions. The treatment of
system in terms of the micellar density may still be app
priate, but with a Helmholtz free energy

f ~rm!5 f id~rm!1D f ~rm!, ~4!

including the excessD f over the ideal-gas contribution~2!.
The main contribution of the interaction to the free ener
comes from the excluded volume, which may be included
7147 ©2000 The American Physical Society
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7148 PRE 62PEDRO TARAZONA, DANIEL DUQUE, AND ENRIQUE CHACO´ N
treating the micelles as hard bodies. With such free ene
we should be able to describe dense micellar fluids and t
phase transition to micellar crystals. The thermodynamic
bility of these dense micellar phases has to be compared
other condensed structures, in which the molecules do
keep the micellar organization: lamellar and hexago
phases may be regarded as packed structures of two-
one-dimensional aggregates, respectively, while bicont
ous or inverse-micelle structures cannot be decompose
independent elements.

As a first step we analyze here the results of a simple
model, which share some qualitative features with th
complex systems. Our aim is to test the accuracy of
statistical mechanics description at two separated level
structure: the molecular level, with the molecules building
the micellar aggregates, and the level of the micellar co
lation structure. We then use the same procedure to stu
3D continuous model for a system of amphiphilic molecu
in water @6#. This minimal model considers only the distr
bution of the amphiphile, without internal degrees of fre
dom other than the orientation of the head-tail direction. T
model contains the essential features to represent diffe
types of molecular aggregates@6# ~planar bilayer membranes
bilayer vesicles and micelles!; it gives a good description o
the elastic constants@7# and also of the properties of mixe
surfactant systems@8#. The density-functional treatmen
checked in 1D allows us to obtain the global phase diagra
in terms of the parameters used to model the molecular
teractions.

II. THE 1D MODEL

Our 1D model is an extension of that used to explore
CMC at low density@4#, and based on previous models f
associating 1D fluids@9,10#. The molecules move along th
X axis, with coordinatesxi 11.xi kept in order by hard-core
repulsions, and they have an internal variablej i , taking in-
teger values from 0 tom. The molecular hard core has leng
s0 when the internal variable isj50 and larger lengths
otherwise. There is a soft interaction potential betwe
neighbor molecules, with relative positionx[xi2xi 11 and
with internal variablesj i ,j i 11 with the form:

f~x!5
4C

D2 ~x2s!~x2s2D!, ~5!

if s<x<s1D and 1<j i5j i 1121<m21, and null other-
wise. This potential energy acts only between molecules w
consecutive values of the internal variable and it has a m
mum value2C, when the molecules are separated by a d
tance x5s1D/2 ~with D<s). This produces an optima
cluster formed bym rods, with internal variablesjk51,
jk1152, . . . ,jk1m215m. The noncyclic character of th
internal variable prevents the growth of clusters beyond
size~see Fig. 1!. The internal variable valuej50, which has
the best packing efficiency, is excluded from these cluste

A. The exact solution

We explore the low-temperature behavior of the mod
with bC@1. At low density the packing constrains are irre
evant and the model reproduces the behavior obtained in
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previous paper@4#, with a CMC-like smooth transition from
a very diluted 1D gas of uncorrelated rods~with random
values of the internal variablej!, to an ideal gas of aggre
gates made bym rods with ordered values ofj. This CMC,
defined as the concentration where there are as many iso
molecules as molecules forming parts of micelles, is loca
around the chemical potentialm52C2kT log@pD2/(4bC)#
and is independent of the hard-core size. At intermed
densities the packing constrains between the aggregate
come important, but their internal structure is maintained:
system becomes a dense 1D fluid made ofm-rod aggregates
Their optimal structure needs a separation of aboutms
1(m21)D/2 between two aggregates, the effective inter
tion between aggregates being a soft repulsion since the
gregates may be compressed beyond their optimal struc
at the price of reducing their cohesive energy. Moreov
there is a qualitatively different state, formed by molecu
with internal variablej50, which has to become relevant
high density, because it reduces the hard-core length tos0
,s.

We may compare the system with a solution of amphip
lic molecules in water. At low concentration there is a CM
where the system changes from an ideal solution of m
ecules~with random positions and orientations! to an ideal
solution of micelles~formed by molecules with strongly cor
related positions and orientations!. Increasing the concentra
tion, the system behaves as a dense fluid of micelles, an
still higher concentration the packing of the spherical m
celles becomes too inefficient and the system changes
qualitatively different molecular organization, like a lamell
phase. This is represented in our model by the tendenc
‘‘align’’ the molecules along thej50 ‘‘direction,’’ breaking
the micellar structure and creating a dense phase wit
qualitatively different structure, as sketched in Fig. 1.

In the isothermal-isobaric ensemble the chemical poten
of the model is exactly given bybm(T,p)5 log(lmax), where
lmax(T,p) is the largest eigenvalue of transfer matrixM,
with elements given by the Laplace transform

Mj,j85E
s~j,j8!

`

dx exp$2b@px1f~x!dj8j11#%, ~6!

wheres(j,j8) is the minimum distance between neighb
rods with internal variablesj andj8 ~i.e., the half-sum of the
j-dependent hard-core lengths!.

FIG. 1. Sketch of particular configurations of our 1D system
m55. The circle indicates that the molecule has an internal varia
j50 and the arrows indicate the other five possibles values ofj. On
upper: a diluted gas. On middle: fluid of micelles~formed by rods
with ordered internal variables, going from 1 tom!. On lower: the
dense phase.



ys
iff
at
r-

sit
b

s
s

e

s
e

er
n

he
n
g
s

lle

l-

c

th
t

od
n

el

the
od-

nal

of
il-
the

n
ture

to
of

ith
l
a
a

u-
ond
ci-
ed

gy
le

d
the

re

hat
rect

-

f
ne
,

PRE 62 7149AGGREGATION MODELS AT HIGH PACKING FRACTION
The exact equation of state, forbC520, D50.1, and
s0 /s50.9, is presented in Fig. 2. As expected, our 1D s
tem has no phase transition, the changes between the d
ent molecular arrangements are gradual. The CMC is loc
around a densityrCMC'1025s21, and it has the same cha
acteristics as described in our previous paper@4#, because the
changes in the hard-core size are irrelevant at low den
The exact correlation structure in the system may also
obtained and shows that for 1024,rs,0.95 most mol-
ecules form micelles and the structure of these micelle
very close to the optimal aggregate: consecutive value
j i , from 1 tom, and a neighbor distance close tos1D/2. At
intermediate densities there is an increasing tendency, du
the packing effects, to compress the micelles~giving shorter
intermolecular distances! and to have neighbor molecule
with the same value of the internal variable, so that th
cannot form part of a perfect micelle. With the paramet
given above, these effects produce the shoulder show
Fig. 2, with a rather flat region forbps'130. We may
interpret this plateau as the 1D signature of what in hig
dimension could be a first-order phase transition betwee
dense micelle fluid and a crystalline phase with a long-ran
order very different from the molecular order in the micelle
At the lower border of the plateau,rs'0.95, the correlation
structure shows that most molecules form part of a mice
while at the high-density end,rs'1.1, most of the mol-
ecules form part of ‘‘lamellar’’ clusters, large groups of mo
ecules with the same value of the internal variable,j50.
Along the plateau we find the two kinds of correlation stru
tures combined in different amounts.

Changing the values of the parametersbC, D, ands0 /s
changes the location and the size of the plateau but with
same interpretation as a quasiphase transition between
phases with very different structures. For more realistic m
els in three dimensions we could expect a true phase tra
tion, or even series of phase transitions, between the mic

FIG. 2. Equation of state of our 1D model, forbC520, D
50.1, ands0 /s50.9. The pressurep and the densityr are pre-
sented in dimensionless form with the appropriate factors ob
5(kBT)21 ands. The solid line is the exact result, the dashed li
is a mean-field approximation. The inset shows the CMC region
which the system goes from an ideal gas of rods~dotted lines! to an
ideal gas of micelles~dashed lines! on increasing the density.
-
er-
ed

y.
e

is
of

to

y
s
in

r
a

e-
.

,

-

e
wo
-

si-
lar

fluid and some kind of hexagonal or lamellar phases. On
other hand, no exact result would be available for the m
els, so that we should rely on approximate treatments.

B. The mean-field treatment

We try now the description of the same one-dimensio
model within a mean-field density functional~MF-DF! ap-
proach @6# that may be used for more realistic models
amphiphilic molecules, for which no exact solution is ava
able. The idea is to describe the molecular aggregates by
local minima of the grand-potential energy,V5F@r#
2mN, where F@r# is a density-functional approximatio
that includes the short-range molecular correlation struc
but not the many-body long-ranged correlations required
describe the ‘‘micellar’’ aggregates in an exact analysis
the system. There is always a local minimum ofV given by
a homogeneous background density,r0(m), which repre-
sents the diluted solution of uncorrelated molecules, w
r(x,j)5r0 /(m11). For values of the chemical potentia
near the CMC and higher, we may find other local minim
representing self-maintained local inhomogeneities, with
density distributionr(r ) going asymptotically tor0 but with
an excess number of particles,Nm , and free energy,Fm ,
which corresponds to the MF-DF description of the molec
lar aggregates. The system is then analyzed with a ‘‘sec
level’’ of statistical mechanics, including the entropy asso
ated to the location of the micelles, which was not includ
in the MF-DF description.

Our 1D model is treated with the Helmholtz free-ener
functional of the local density of particles with each possib
value of the internal variable,

F@r~x,j!#5Fhr@r#5 (
j51

m21 E
2`

`

dxE
x1s

x1s1D

dx8

3f~x82x!r~x,j!r~x8,j11!, ~7!

whereFhr@r# is the exact DF of the hard-rod mixture flui
and the second term is the mean-field approximation for
attractive interactions.

At low temperature and background density,r0(m)!1,
the local minima of this free-energy density functional a
well represented within the variational family:

r~x,j!5
1

m11
r0~m!1(

i 51

m

dj,i S a i

p D 1/2

exp@2a i~x2xi !
2#

~8!

with Nm5m and where the Kronecker delta ensures t
each Gaussian peak is made of molecules with the cor
value ofj to build a ‘‘micelle.’’ Within this variational ap-
proach the results forFm and vm are analytic and indepen
dent of the chemical potential:

bFmn52~m21!bC1
m

2
logF8bC

pD2G2 log~2! ~9!

and

vm521/nApeD2

8bC
~10!

at
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7150 PRE 62PEDRO TARAZONA, DANIEL DUQUE, AND ENRIQUE CHACO´ N
leading to a prediction of the CMC close to the exact res
as in our previous paper@4#. To extend the MF-DF treatmen
to the dense ‘‘micelle fluid,’’ we may represent the micell
micelle interaction by an effective hard core with the sa
second virial coefficient as the interaction potential betwe
two micelles, which gives

sm5ms1
m21

2
DF12A p

4bCmG , ~11!

where the term in brackets takes into account that the c
pression of the ‘‘micelles’’ may reduce their effective size
a length slightly shorter than the optimal size.

This representation of the micellar interactions as h
cores leads to a simple form for the free energy of a mice
fluid:

b f m~rm!5rm@ log~rmvm!211bFm2 log~12rmsm!#,
~12!

which recovers Eq.~2! in the diluted regime~when rmsm
!1) but also includes the main effects of the repulsion
tween micelles. The equation of state for the micellar flu
above the CMC, is then given by

bpm5
rm

12rmsm
~13!

and the comparison with the exact equation of state~Fig. 2!
gives a very good agreement up to densities around 0.9s,
including the sharp rise of the pressure when the total den
approaches the nominal maximum within the approximati
r5mrm→m/sm , at which the micelles would be fully
packed. In the exact result we may reach higher densitie
compressing the micelles beyond their optimal size or hav
molecules with internal variablej50, which cannot form
part of micelles but have a shorter hard-core lengths0 . The
later type of configurations may also be found within t
MF-DF free energy~7! as a homogeneous dense phase
which all the molecules havej50 so that it behaves as
hard-rod fluid, which has lost the entropy associated
changes of the internal variablej and also the binding energ
associated to the formation of micelles but has gained
tropic stability by the reduction of the hard cores. The fr
energy for this ‘‘lamellar’’ phase in our model is obtaine
from the same free-energy density functional~7! with the
density distributionr(x,j)5dj,0r:

b f 1~r!5r@ log~rs!212 log~12rs0!# ~14!

and the equation of state is

bp1~r!5
r

12rs0
. ~15!

Within the MF-DF description the ‘‘micellar fluid’’ and the
‘‘lamellar’’ phase are separated thermodynamic phases~as
they would indeed be in a real 3D amphiphilic system!, and
the phase transition between them is found by the us
double tangent construction between the free ener
f m(mr) and f l(r), as given in Eq.~12! and Eq.~14!. Figure
3 compares the exact free energy per unit length with
t,
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approximationsf m(mr) and f l(r) in the intermedium and
high-density regimes, respectively. The result shows t
f m(mr) is an excellent approximation to the exactf (r) up to
rs'0.96 while f l(r) is indistinguishable from the exact re
sults for rs&1.1. In the region between these two valu
both f m(mr) and f l(r) separate from the exactf (r) but the
double tangent straight line between the two approximati
remains very close to the exact result. The results of
approximation for the equation of state are also presente
Fig. 2; the nearly flat plateau presented by the exact pres
is approximated by the phase coexistence between the d
‘‘micellar’’ fluid and the denser ‘‘lamellar’’ phase.

There is clearly a good agreement between the gen
trend shown by the exact result and the combined result
the MF-DF approach. The later includes two different d
scriptions for the ‘‘micellar’’ fluid and the ‘‘lamellar’’ phase
The ‘‘micelles’’ are studied through a ‘‘two-levels’’ statis
tics; at the first level an isolated molecular aggregated
represented by the local minima of the mean-field den
functional F@r#, to give its microscopic structure, exce
free energy, number of molecules, and size. At the sec
level of the statistics we include the entropy associated to
location of the aggregates~including their packing con-
straints!. On the other hand, the ‘‘lamellar’’ phase is studie
directly at a ‘‘one-level’’ statistics, as a macroscopic pha
described with the same free-energy functionalF@r#. The
mixture of the two description levels, to get the overall b
havior of these systems, is the underlying idea in the desc
tion of amphiphilic systems with most phenomenologic
theories @3#, however, in any practical implementation o
those approaches there are always uncertainties related t
separation of degrees of freedom for the two levels of sta
tics. The MF-DF gives a self-consistent approach to
problem, with a clearly cut level of approximation at the fir
level and a consistent recipe for the link between the t
levels, through the parametersFm , vm , andsm . The simple
1D model used here presents qualitative features simila
those of real amphiphilic systems, and its exact solution

FIG. 3. Dimensionless free-energy density of our 1D mod
Solid line: exact result. Dashed lines: mean-field approximation
the ‘‘micellar’’ phase ~at low densities! and the ‘‘dense phase,’
both joined by a double-tangent construction~indistinguishable
from the exact result at this magnification!.



w
h

gr
n
a
c

on
t
th
f t
o
ec

n
ul
e

a
w

he

.
as

e
c-
am
d

se
re
am
fi-

re

xi

re

nal
ird

ac-
tion

l
ch
ys-
cal
rp

ng

e-

y,

sity
ro-
ber

l

le
e
les.
les

PRE 62 7151AGGREGATION MODELS AT HIGH PACKING FRACTION
lows the direct test of these recipes. In the next section
use the approach for a more realistic 3D model of amphip
lic systems.

III. THE 3D MODEL

As in the 1D mean-field treatment, our 3D approach@6#
describes the microscopic or mesoscopic molecular ag
gates in water as inhomogeneous density distributio
treated within the density-functional formalism and using
approximation for the Helmholtz free-energy density fun
tional, F@r#, based on an effective molecular interacti
model. The model effective interaction should include bo
effects: the solvatation forces induced by the water and
changes in the entropy associated to the configurations o
flexible tails. We proposed a uniaxial effective pairwise p
tential, with the head-tail asymmetry described by a unit v
tor û1 along the molecular axis, which is written as

F~r22r1 ,û2 ,û2!5Fhs~r 21!1Fa~r2 ,û1 ,û2!. ~16!

As the simplest choice of a repulsive isotropic interactio
which only depends on the distance between the molec
centers,r 215ur21u5ur22r1u, we take it to be the hard-spher
potential,Fhs(r ), with a sphere diameter,s ~which we take
as the unit length!. The anisotropic part may be written as
general expansion in spherical harmonics. In our case
include only the two first terms which do not couple t
orientation of the two molecules,

Fa~r21,û1 ,û2!5 (
i 51,2

F i~r 21!

3@Pi~ û1• r̂21!1Pi~2û2• r̂21!#, ~17!

wherer̂215r21/r 21 andPi(x) are the Legendre polynomials
The first coefficient function of the anisotropic part w
taken as an empty core Yukawa potential,

F1~r !5
C

r
exp@2l~r 2s!#

for r>s and null inside the hard core,r ,s. The second
coefficient function in Eq.~17! is taken to be proportional to
the first, F2(r )5qF1(r ). Thus, the model has three fre
parameters,C, l, and q to represent the molecular intera
tions. As we have shown in our previous paper these par
eters may be tuned to represent different properties: the
mensionless parameterbC may be regarded as the inver
temperature or as the representation of a series of diffe
amphiphiles studied at fixed room temperature; the par
eter l controls the number of molecules in the micelles;
nally, the main effect of the parameterq is thatq.0 favors
the bilayer structures with respect to the micellar structu
which are more stable forq50. All the results presented
here are forls52, q50.3, and thebC56.3885 isotherm.

The Helmholtz free-energy density functional is appro
mated by
e
i-

e-
s,
n
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s,

-

F@r~r ,û!#5Fhs@r~r !#1kBTE dr1dû1r~r1!a~r1 ,û1!

3 log@4pa~r1 ,û1!#

1 1
2 E dr1dû1dr2dû2r~r1 ,û1!

3r~r2 ,û2!Fa~r21,û1 ,û2!. ~18!

The first term is the density functional for the hard-sphe
fluid; it depends on the density distribution,r(r ), and it is
approximated by a well-tested nonlocal density functio
@11#. The second term is the rotational entropy and the th
one is the mean-field contribution of the anisotropic inter
tions; they depend on the position and molecular orienta
distribution,r(r ,û), with a(r ,û)[r(r ,û)/r(r ).

The grand free energyV@r(r ,û)# always has a loca
minimum for a homogeneous density distribution, in whi
our model follows the thermodynamics of a hard-sphere s
tem. At low temperature and density there appear other lo
minima: self-maintained local inhomogeneities, with sha
oscillatory density distribution,r(r ), and orientational dis-
tributions that are qualitatively comparable with the layeri
and orientations of the real membranes and micelles.

We first study the diluted regime, without interactions b
tween the aggregates, as done in previous papers@4,6#. With
the model parameters given above, the minimization ofV
5F2mN gives a local minimum with spherical symmetr
whose radial density distribution is given in Fig. 4~a!. As
discussed in previous papers, this inhomogeneous den
distribution represents a micelle with the molecular hyd
phobic tails pointing towards the origin. The excess num
of molecules over the diluted bulk density isNm'47, and it
has excess internal energybEm'2536 and Helmholtz free
energybFm'2291, with little variations with the chemica
potential aroundbm'26. The configurational unit volume
is estimated by Eq.~3! to be vm5exp(25.2)s350.0055s3

and the CMC is predicted for chemical potentialbm5

FIG. 4. On the left-hand side the typical micellar density profi
obtained forbm526.2 in the neighborhood of the CMC. On th
right-hand side the effective interaction potential between micel
Dotted line: free-energy excess coming from the hard molecu
core. Full line: full potential including the solvatation force from
the soft anisotropic interactions.
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26.5. At the same isotherm there is a local minimum ofV
5F2mN with planar symmetry that represents a bilay
membrane@6#, which would become stable~i.e., with zero
excess grand potential! at chemical potentialbm'25.3.
However, the presence of the CMC at lowerbm pre-empts
the formation of free bilayer membranes in the diluted
gime, because before reaching this valuebm, the system
would become a dense micellar fluid and the steric effe
between the aggregates have to be included.

The micelle-micelle interaction has two different cont
butions, coming from the two terms in the molecular inte
actions~16!. The first one describes the direct steric rep
sion between amphiphile molecules while the second
represents the solvation forces in the water bath. The l
produces an effective soft-repulsive potential between
micelles, which may be calculated~always in the mean-field
approximation! from the the density distributions of the ag
gregates as

FAB~r !5 1
2 E dr1dû1dr2dû2

3r~r1 ,û1!r~r2 ,û2!Fa~r 8,û1 ,û2!

5 (
k51,2,

E dr1dû1dr2r~r1 ,û1!r~r2!fk~r 8!

3Pk~r 8!Pk~ û1• r̂ 8!,

where r 85r21r2r1 . This potential is shown in Fig. 4~b!,
together with the free-energy excess coming from the h
molecular cores, as a function of the distance between
centers of the two micelles. Clearly, the effective micel
micelle interaction is dominated by the solvation force
which create a soft repulsion between micelles at distan
beyond direct hard-core molecular contact between the
aggregates.

The excess free energyD f (rm) in Eq. ~4! produced by
this soft-repulsive potential may be approximated by an
fective hard core with diametersm , as usually is done in the
theory of simple liquids@12#. We have employed the Barke
Henderson choice to determine a hard-sphere diameter i
pendent of the density, which in the explored isotherm
sm56.6s. The excess free energyD f is then given by the
Carnahan-Starling approximation@12#, with a packing frac-
tion nm5rmpsm

3 /6.
With the data forFm andvm in Eq. ~2!, and the choice of

sm for D f , the free energy of the micellar fluid~4! is com-
pletely determined and we get the total amphiphile den
r t5Nmrm1rb and the pressure,p, as functions of the
chemical potential, shown in Figs. 5 and 6. The sharp
crease of bothr t andp at bm'26.5 shows the CMC as a
quasiphase transition, with a large increase of the total c
centration for very small changes in the chemical potent
When the micelle packing fraction reaches the valuenm
50.49 the hard-sphere fluid, representing the micel
would crystallize in the fcc structure. The equation of st
has to be changed from the the Carnahan-Starling appr
mation, valid for the fluid, to one of the available approx
mations for the hard-sphere crystal@13#. The transition from
the dense micellar fluid to the micellar fcc crystal is a fir
order phase transition represented by the small jump in
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total density atbm526.1 in Fig. 5. The pressure calculate
for the solid phase in Fig. 6 becomes larger than that of
fluid at the same chemical potential, indicating that the so
phase is stable with respect to the micellar fluid.

We now turn to study a dense phase that does not h
micellar structure. This is the lamellar structure made
stacking planar bilayer membranes in a periodic struct
along one direction. As commented above, the critical agg
gation concentration CAC for the formation of free bilay
membranes was, for our present choice of the tempera
and the molecular interactions, at higher concentrations t
the CMC. We extend the search for inhomogeneous st
tures minimizing V5F2mN with the density-functional

FIG. 5. Equation of state of our 3D model: total density vers
chemical potential. The solid line follows the density of the eq
librium phase: micellar fluid, micellar solid, and lamellar phas
with vertical jump at the first-order phase transitions. Dotted lin
metastable lamellar phase. Dashed line: metastable micellar cry

FIG. 6. Chemical potential vs pressure phase equation of s
Solid line: lamellar phase. Dotted line: micellar fluid. Dashed lin
micellar crystal. The equilibrium phase is always the lowest li
Note that on the scale of the figure the range of the stability of
fluid is very narrow, aroundp50.
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free energy~18! beyond the diluted limit of isolated bilayers
to find periodic structures, like that shown in Fig. 7~a!, with
a period which decreases asbm increases. The CAC in the
diluted regime, atbm'25.3 corresponds to the divergenc
of the period in Fig. 7~b!, and asbm increases, the compres
ibility of the lamellar phase decreases giving a flatter cur
in qualitative agreement with experimental results for neu
~uncharged! and isoelectric lipids@14#. The equation of state
of this lamellar phase is obtained directly from the fre
energy functional~18!, without need of the second step
statistics done for the micelles, and shown in Figs. 5 and
compare with the later. Figure 5 shows than the density
the lamellar phase increases very sharply at the CAC,bm
'25.4, and it immediately reaches a density higher than
micellar phases at the same chemical potential. However
pressure of the lamellar phase, Fig. 6, remains below tha
the micellar crystal up tobm'23.8; at this crossing poin
in the figure there is a first-order phase transition from
micellar crystal to the lamellar phase, with a large increas
the density, as indicated in Fig. 5. This transition is driven
the balance between the optimal aggregation of the
phiphile in micelles~rather than in bilayer membranes! indi-
cated by having the CMC lower than the CAC, and the pa
ing efficiency of the planar bilayers, which is much high
than that of the spherical micelles. The representation of
lamellar phase directly from the density functional~18!, in-
stead of the two consecutive levels used for the mice
fluid, is equivalent to what has been done and tested in
simple 1D model of Sec. II for the dense ordered phase,
we may expect that the approach should be even more a
rate in this 3D case, as the global role of the correlatio
should become less important in higher dimension.

The sequence from low to high densities in our mode
then: isolated molecules (m,26.5)—micellar liquid (m,
26.1)—micellar crystal (m,23.8)—lamellar (m.23.8)
phase. The last two transitions are true, first-order, ther
dynamic transitions, unlike the first one~the CMC!, which is
a quasitransition. This sequence maps qualitatively very w
with experimental results, Nevertheless, there are sev
points that would require future attention: the effecti

FIG. 7. On the left-hand side the typical lamellar density pro
obtained forbm524.8 with lamellar periodPL55s. On the right-
hand side the variation of the lamellar periodPL , with the chemical
potential.
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micelle-micelle interaction potential in Fig. 4~b! is much
softer that the repulsive part of the usual model potentials
simple liquids, so that the description in terms of an equi
lent hard-sphere fluid may be less accurate. Using other
proaches ~like the method of Weeks, Chandler, an
Andersen@12#! to fix the effective hard-sphere diamete
does not produce important changes in the predictions in
micellar fluid, but its crystallization may be more affecte
including the possible existence of a bcc lattice. Moreov
there are other possible dense phases that should be co
ered to get the global phase diagram, in particular the h
agonal phase made by two-dimensional packing of cylind
cal micelles is very likely to appear between the micellar a
the lamellar phases. In the diluted regime our model
local minima ofV with cylindrical symmetry and with the
main characteristics of the cylindrical micelles, althou
they are usually found to be stable at higher concentratio
intermediate between the CMC for spherical micelles and
CAC for the bilayer membranes. Their packing efficien
should also be intermediate between spheres and plane
that the hexagonal structure may well be a stable phase
our simple model, as it is in real amphiphiles. The free e
ergy of this and other possible dense phases may in princ
be obtained from Eq.~18!, exactly in the same way as don
for the lamellar phase, i.e., direct minimization of the gran
potential energy with the relevant symmetry. The only dif
culty is purely technical; the density distribution of the l
mellar phase depends only on one coordinate, while tha
the hexagonal phase would depend on two variables,
other possible phases like bicontinuous structures wo
have three-dimensional unit cells. The minimization ofV for
these phases would require a higher computational ef
than for the lamellar phase but it would be similar from t
fundamental point of view.

IV. CONCLUSIONS

We have described a microscopic approach that can
used to determine the global phase diagram of amphiph
systems. It combines two levels of description for the mic
lar phases and one level for the dense amphiphilic structu
We have first compared the results of this approach to
exact results of a 1D CMC model. We have then conside
a minimal 3D model that had been used before to study
diluted amphiphile solutions. The conclusions of the pres
paper are twofold; first to show that the simple molecu
interaction model@Eqs. ~16!–~18!# captures the main fea
tures of real amphiphilic systems, with the formation of m
celles at a low CMC, and the transition to other dense pha
as the poor packing efficiency of these spherical structu
makes them unfavorable. This is a typical problem in so
condensed matter, with two levels of molecular organizat
playing relevant roles at the same temperature, and it is
teresting to find simple models with the same behavior. T
molecular interaction parameters in our model may be qu
tatively associated to the main features of real amphiphi
thus the parameterC corresponds roughly to the lengths
the hydrophobic tails, so that at fixed temperature the CM
decreases exponentially with increasingC, and the paramete
q gives a measure of the size ratio between those tails
polar heads: low values ofq produce stable micelles an
higher values produce stable bilayer membranes in the
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luted regime. The study of dense phases within the mo
should show whether the global phase diagrams of the m
are similar to those observed experimentally and how t
depend on the molecular interactions.

The second conclusion of this paper is to validate
proposed approach to study the dense micellar phases w
consistent two-levels approximation from a mean-field d
sity functional. The comparison with the exact results in
simple 1D model and the application to the 3D model sh
that the approach is both accurate and computationally
sible. Clearly the approach may be extended to more real
models of amphiphilic molecules and copolymers, tak
into account flexible tails or nonspherical hard cores. T
estimation of the configurational unit volume for the micell
~3!, and the mean-field effective interaction between th
@Eq. ~19!# are employed consistently with the free-ener
nd

s
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functional used to obtain the structure of a single aggreg
and the thermodynamics of other dense phases, without
erence to any empirical parameter beyond those in the
lecular interaction model. In this respect, one could also
a theory different from the MF-DF one, like the sel
consistent field theory for polymers, which has been rece
applied to dense amphiphilic systems@15# and apply the
same two-level approach to the micellar phases and the
level description for the hexagonal, lamellar, or bicontinuo
phases.
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